18 research outputs found

    Characterization and Verification Environment for the RD53A Pixel Readout Chip in 65 nm CMOS

    Full text link
    The RD53 collaboration is currently designing a large scale prototype pixel readout chip in 65 nm CMOS technology for the phase 2 upgrades at the HL-LHC. The RD53A chip will be available by the end of the year 2017 and will be extensively tested to confirm if the circuit and the architecture make a solid foundation for the final pixel readout chips for the experiments at the HL-LHC. A test and data acquisition system for the RD53A chip is currently under development to perform single-chip and multi-chip module measurements. In addition, the verification of the RD53A design is performed in a dedicated simulation environment. The concept and the implementation of the test and data acquisition system and the simulation environment, which are based on a modular data acquisition and system testing framework, are presented in this work

    Probing Quadratic Gravity with the Event Horizon Telescope

    Full text link
    Quadratic gravity constitutes a prototypical example of a perturbatively renormalizable quantum theory of the gravitational interactions. In this work, we construct the associated phase space of static, spherically symmetric, and asymptotically flat spacetimes. It is found that the Schwarzschild geometry is embedded in a rich solution space comprising horizonless, naked singularities and wormhole solutions. Characteristically, the deformed solutions follow the Schwarzschild solution up outside of the photon sphere while they differ substantially close to the center of gravity. We then carry out an analytic analysis of observable signatures accessible to the Event Horizon Telescope, comprising the size of the black hole shadow as well as the radiation emitted by infalling matter. On this basis, we argue that it is the brightness within the shadow region which constrains the phase space of solutions. Our work constitutes the first step towards bounding the phase space of black hole type solutions with a clear quantum gravity interpretation based on observational data.Comment: 18 pages, 6 figure

    Neutron irradiation test of depleted CMOS pixel detector prototypes

    Full text link
    Charge collection properties of depleted CMOS pixel detector prototypes produced on p-type substrate of 2 kΩ\Omegacm initial resistivity (by LFoundry 150 nm process) were studied using Edge-TCT method before and after neutron irradiation. The test structures were produced for investigation of CMOS technology in tracking detectors for experiments at HL-LHC upgrade. Measurements were made with passive detector structures in which current pulses induced on charge collecting electrodes could be directly observed. Thickness of depleted layer was estimated and studied as function of neutron irradiation fluence. An increase of depletion thickness was observed after first two irradiation steps to 1⋅\cdot1013^{13} n/cm2^{2} and 5⋅\cdot1013^{13} n/cm2^{2} and attributed to initial acceptor removal. At higher fluences the depletion thickness at given voltage decreases with increasing fluence because of radiation induced defects contributing to the effective space charge concentration. The behaviour is consistent with that of high resistivity silicon used for standard particle detectors. The measured thickness of the depleted layer after irradiation with 1⋅\cdot1015^{15} n/cm2^{2} is more than 50 μ\mum at 100 V bias. This is sufficient to guarantee satisfactory signal/noise performance on outer layers of pixel trackers in HL-LHC experiments

    BDAQ53, a versatile pixel detector readout and test system for the ATLAS and CMS HL-LHC upgrades

    Full text link
    BDAQ53 is a readout system and verification framework for hybrid pixel detector readout chips of the RD53 family. These chips are designed for the upgrade of the inner tracking detectors of the ATLAS and CMS experiments. BDAQ53 is used in applications where versatility and rapid customization are required, such as in laboratory testing environments, test beam campaigns, and permanent setups for quality control measurements. It consists of custom and commercial hardware, a Python-based software framework, and FPGA firmware. BDAQ53 is developed as open source software with both software and firmware being hosted in a public repository.Comment: 6 pages, 6 figure

    Large coupling-strength expansion of the M{\o}ller-Plesset adiabatic connection: From paradigmatic cases to variational expressions for the leading terms

    Get PDF
    We study in detail the first three leading terms of the large coupling-strength limit of the adiabatic connection that has as weak-interaction expansion the M{\o}ller-Plesset perturbation theory. We first focus on the H atom, both in the spin-polarized and the spin-unpolarized case, reporting numerical and analytical results. In particular, we derive an asymptotic equation that turns out to have simple analytical solutions for certain channels. The asymptotic H atom solution for the spin-unpolarized case is then shown to be variationally optimal for the many-electron spin-restricted closed-shell case, providing expressions for the large coupling-strength density functionals up to the third leading order. We also analyze the H2 molecule and the uniform electron gas

    Arginase 1 Insufficiency Precipitates Amyloid-\u3cem\u3eβ\u3c/em\u3e Deposition and Hastens Behavioral Impairment in a Mouse Model of Amyloidosis

    Get PDF
    Alzheimer’s disease (AD) includes several hallmarks comprised of amyloid-β (Aβ) deposition, tau neuropathology, inflammation, and memory impairment. Brain metabolism becomes uncoupled due to aging and other AD risk factors, which ultimately lead to impaired protein clearance and aggregation. Increasing evidence indicates a role of arginine metabolism in AD, where arginases are key enzymes in neurons and glia capable of depleting arginine and producing ornithine and polyamines. However, currently, it remains unknown if the reduction of arginase 1 (Arg1) in myeloid cell impacts amyloidosis. Herein, we produced haploinsufficiency of Arg1 by the hemizygous deletion in myeloid cells using Arg1fl/fl and LysMcreTg/+ mice crossed with APP Tg2576 mice. Our data indicated that Arg1 haploinsufficiency promoted Aβ deposition, exacerbated some behavioral impairment, and decreased components of Ragulator-Rag complex involved in mechanistic target of rapamycin complex 1 (mTORC1) signaling and autophagy. Additionally, Arg1 repression and arginine supplementation both impaired microglial phagocytosis in vitro. These data suggest that proper function of Arg1 and arginine metabolism in myeloid cells remains essential to restrict amyloidosis

    Mining Big Data for Tourist Hot Spots: Geographical Patterns of Online Footprints

    Get PDF
    Understanding the complex, and often unequal, spatiality of tourist demand in urban contexts requires other methodologies, among which the information base available online and in social networks has gained prominence. Innovation supported by Information and Communication Technologies in terms of data access and data exchange has emerged as a complementary supporting tool for the more traditional data collection techniques currently in use, particularly, in urban destinations where there is the need to more (near)real-time monitoring. The capacity to collect and analise massive amounts of data on individual and group behaviour is leading to new data-rich research approaches. This chapter addresses the potential for discovering geographical insights regarding tourists’ spatial patterns within a destination, based on the analysis of geotagged data available from two social networks. ·info:eu-repo/semantics/publishedVersio

    Gradient Expansions for the Large-Coupling Strength Limit of the Møller-Plesset Adiabatic Connection

    No full text
    The adiabatic connection that has, as weak-interaction expansion, the Møller-Plesset perturbation series has been recently shown to have a large coupling-strength expansion, in terms of functionals of the Hartree-Fock density with a clear physical meaning. In this work, we accurately evaluate these density functionals and we extract second-order gradient coefficients from the data for neutral atoms, following ideas similar to the ones used in the literature for exchange, with some modifications. These new gradient expansions will be the key ingredient for performing interpolations that have already been shown to reduce dramatically MP2 errors for large noncovalent complexes. As a byproduct, our investigation of neutral atoms with large number of electrons N indicates that the second-order gradient expansion for exchange grows as N log(N) rather than as N, as often reported in the literature

    Gradient Expansions for the Large-Coupling Strength Limit of the Møller-Plesset Adiabatic Connection

    No full text
    [Image: see text] The adiabatic connection that has, as weak-interaction expansion, the Møller–Plesset perturbation series has been recently shown to have a large coupling-strength expansion, in terms of functionals of the Hartree–Fock density with a clear physical meaning. In this work, we accurately evaluate these density functionals and we extract second-order gradient coefficients from the data for neutral atoms, following ideas similar to the ones used in the literature for exchange, with some modifications. These new gradient expansions will be the key ingredient for performing interpolations that have already been shown to reduce dramatically MP2 errors for large noncovalent complexes. As a byproduct, our investigation of neutral atoms with large number of electrons N indicates that the second-order gradient expansion for exchange grows as N log(N) rather than as N, as often reported in the literature

    Radiation tolerant, thin, passive CMOS sensors read out with the RD53A chip

    No full text
    The radiation hardness of passive CMOS pixel sensors fabricated in 150nm LFoundry technology is investigated. CMOS process lines are especially of interest for large-scale silicon detectors as they offer high production throughput at comparatively low cost. Moreover, several features like poly-silicon resistors, MIM-capacitors and several metal layers are available which can help enhance the sensor design. The performance of a 100µm thin passive CMOS sensor with a pixel pitch of 50µm at different irradiation levels, 5 × 1015^{15}neqc_{qc}m−2^{−2} and 1 × 1016^{16}neqc_{qc}m−2^{−2}, is presented. The sensor was bump-bonded and read out using the RD53A readout chip. After the highest fluence a hit-detection efficiency larger than 99% is measured for minimum ionising particles. The measured equivalent noise charge is comparable to conventional planar pixel sensors. Passive CMOS sensors are thus an attractive option for silicon detectors operating in radiation harsh environments like the upgrades for the LHC experiments
    corecore